Fluid Power World

  • Home
  • Technologies
    • Hydraulics
      • Cylinders & Actuators
      • Filtration/Contamination Control
      • Fittings, Couplings & Adapters
      • Fluids
      • Fluid Conditioning
      • Hose & Tubing
      • Pumps & Motors
      • Related Technologies
      • Sealing
      • Sensors & Gauges
      • Valves & Manifolds
    • Pneumatics
      • Air Preparation & Regulation
      • Compressed Air Technologies
      • Cylinders & Actuators
      • End Effectors & Grippers
      • Fittings, Couplings & Adapters
      • Hose & Tubing
      • Sensors
      • Vacuum
      • Valves & Manifolds
  • Engineering Basics
  • Trending
  • Resources
    • Digital Issues
    • Pneumatics Tech Toolbox
    • Podcasts
    • Subscribe to Fluid Power World Print Magazine
    • Videos
    • Webinars / Digital Events
    • White Papers
  • Women in Engineering
    • Women in Fluid Power
    • Women in Engineering
  • Design Guide Library
  • Classrooms
    • Pneumatics Classroom
  • SUBSCRIBE

What causes O-ring failures?

By Josh Cosford | January 15, 2021

Share

An O-ring is a polymer seal most often used in fluid power as either a dynamic or static seal. For light-duty pneumatic applications, an O-ring is a suitable seal technology used in pistons, piston rods, valve spools and other locations in air systems. O-rings best suit the sealing of static surfaces in hydraulic applications, such as cylinder barrel end seals, pump covers, and manifold interfaces, to name a few.

Static O-ring seals have but one job; prevent air or hydraulic pressure media from escaping cylinders, valves, pumps and other components. You must correctly design its cavity and choose the correct seal diameter and cross-section to suit that pocket. An O-ring must be squeezed upon installation, but not so much as to damage it. Additionally, the seal’s rubber compound must be selected with fluid and temperature in mind since even correctly sized seals will fail when poorly matched to its ambient conditions.

Understanding the top five reasons O-rings fail will help you ensure long-lasting designs.

An example of extrusion nibbling. Image courtesy of Trelleborg Sealing Solutions
An example of extrusion nibbling. Image courtesy of Trelleborg Sealing Solutions
  1. Improperly designed seal pocket. A seal must reside slightly compressed within a cavity to prevent extrusion through the clearance between each surface. The space between the two sealing surfaces is called the extrusion gap, which cannot be too large. If the “E-gap” is too large, the pressure internal to the component may squeeze the rubber material out through that gap. This “nibbling” of the seal takes the form of a delicate ribbon of rubber trailing off the O-ring circumference.
  2. Seal too small. A seal too small for its designed pocket will not crush effectively and simply allow fluid to pass. This type of failure tends to occur quickly as the seal cannot form effectively to the pocket to prevent fluid bypass. Even if the size is marginally smaller than required, the seal will fail sooner than the correct one.
  3. Seal too large. If a seal is too large for its cavity, the component may never seal properly to begin with. For example, installing a piston rod into a cylinder head may be impossible if the O-ring is too large. A marginally larger seal may still allow installation to occur but will fail as the seal is compressed tighter than designed. An O-ring must be compressed enough to fill its cavity, but too much compression deforms the seal into a rectangular shape as it loses its elasticity.
  4. Incorrect temperature compatibility. The polymer of the O-ring must be selected to work within the specific temperature range for the application. A Buna Nitrile seal used in a cold environment results in the hardening of the O-ring, and it loses the elasticity required to conform to the shape of its cavity.
    An example of thermal degradation O-ring failure, damage caused by excessive heat. Image courtesy of Trelleborg Sealing Solutions
    An example of thermal degradation O-ring failure, damage caused by excessive heat. Image courtesy of Trelleborg Sealing Solutions

    Conversely, when you expose a seal to hot ambient conditions, it may become too soft. A hot O-ring may turn gooey and will easily extrude through small E-gaps, especially in applications where the E-gap can change, such as with O-rings used as end-seals in hydraulic cylinder barrels.

  1. Incorrect fluid compatibility. Not all seals work with all fluid media, and your seal polymer must be compatible with the fluid type. Many hydraulic applications using urethane seals and standard hydraulic oil will see no issues regarding compatibility. But if the fluid turns out to be water-glycol, for example, the urethane seals will crack or break apart.

Filed Under: Sealing & Contamination Control Tips

 

About The Author

Josh Cosford

Current Digital Issue

  Easier access to more of our content Every other month, readers of Fluid Power World have access to our beautiful print and digital editions, where we share a selection of the best fundamentals content, technology news, case studies, and technical articles that cover the gamut of hydraulics and pneumatics system design. But we only…

Subscribe!

Fluid Power World is written by engineers for engineers engaged in designing machines and or equipment in Off-Highway, Oil & Gas, Mining, Packaging, Industrial Applications, Agriculture, Construction, Forestry, Medical and Material Handling. Fluid Power World covers pneumatics, mobile hydraulics and industrial hydraulics.

Fluid Power Design Guides

fluid
“fpw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Fluid Power Professionals.

RSS Featured White Papers

  • Moving fluid power forward
  • High-force linear motion: How to convert from hydraulic cylinders to electric actuators and why.
  • A technical comparison: Performance of pneumatic cylinders and electric rod actuators
Fluid Power World
  • Hose Assembly Tips
  • Mobile Hydraulic Tips
  • Pneumatic Tips
  • Sealing & Contamination Control Tips
  • About us
  • Contact Us

Copyright © 2024 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Fluid Power World

  • Home
  • Technologies
    • Hydraulics
      • Cylinders & Actuators
      • Filtration/Contamination Control
      • Fittings, Couplings & Adapters
      • Fluids
      • Fluid Conditioning
      • Hose & Tubing
      • Pumps & Motors
      • Related Technologies
      • Sealing
      • Sensors & Gauges
      • Valves & Manifolds
    • Pneumatics
      • Air Preparation & Regulation
      • Compressed Air Technologies
      • Cylinders & Actuators
      • End Effectors & Grippers
      • Fittings, Couplings & Adapters
      • Hose & Tubing
      • Sensors
      • Vacuum
      • Valves & Manifolds
  • Engineering Basics
  • Trending
  • Resources
    • Digital Issues
    • Pneumatics Tech Toolbox
    • Podcasts
    • Subscribe to Fluid Power World Print Magazine
    • Videos
    • Webinars / Digital Events
    • White Papers
  • Women in Engineering
    • Women in Fluid Power
    • Women in Engineering
  • Design Guide Library
  • Classrooms
    • Pneumatics Classroom
  • SUBSCRIBE