Fluid Power World

  • Home
  • Technologies
    • Hydraulics
      • Cylinders & Actuators
      • Filtration/Contamination Control
      • Fittings, Couplings & Adapters
      • Fluids
      • Fluid Conditioning
      • Hose & Tubing
      • Pumps & Motors
      • Related Technologies
      • Sealing
      • Sensors & Gauges
      • Valves & Manifolds
    • Pneumatics
      • Air Preparation & Regulation
      • Compressed Air Technologies
      • Cylinders & Actuators
      • End Effectors & Grippers
      • Fittings, Couplings & Adapters
      • Hose & Tubing
      • Sensors
      • Vacuum
      • Valves & Manifolds
  • Engineering Basics
  • Trending
  • Resources
    • Digital Issues
    • Pneumatics Tech Toolbox
    • Podcasts
    • Subscribe to Fluid Power World Print Magazine
    • Videos
    • Webinars / Digital Events
    • White Papers
  • Women in Engineering
    • Women in Fluid Power
    • Women in Engineering
  • Design Guide Library
  • Classrooms
    • Pneumatics Classroom
  • SUBSCRIBE

Modular and block control valves for excavator use

By Mary Gannon | October 7, 2021

Share

Linde Hydraulics GmbH & Co. KG has introduced a new generation of control valves for use in wheeled excavators. The new valve block VW 22/18 M5-03 for the open circuit is characterized by its modular system, while the monoblock with five sections plus pressure relief section represents the basic set-up. Optionally, three additional sections can be added on each side of the block, thus specifically addressing customer needs.

Linde Hydraulics’ new modular VW2218 M5-03 valve with 7 sections
Linde Hydraulics’ new modular VW2218 M5-03 valve with 7 sections

Various functions can be selected for the additional sections, which are perfectly designed for the requirements in a wheeled excavator. In addition to proven options such as boom or lift-regeneration, anti-drift and return flow bypass, Linde Hydraulics now also offers rod-to-head-regeneration and an innovative float function for the excavator for the first time.

The Float Function has since been used mainly in applications with excavating functions, for example in the lift or bucket of a wheel loader – now it can also be used in excavators without much effort.

In conventional control valves, the actuator is fixed. In this way, it is rigid and cannot adapt to external conditions. In certain applications, however, it is desired that a cylinder yields to external forces by being able to retract and extend — the so-called floating function. This is particularly important when either increased wear of the attachment on a hard surface or damage to a sensitive surface by the attachment needs to be avoided. A typical example is the unloading of bulk material on a ship, where damage to the deck must be avoided.

Section view of valve when bucket is being brought into position
Section view of valve when bucket is being brought into position

In the context of control valves, the term “float” refers to the floating cylinder that can move without resistance due to tank relief on both sides. Thus, the function can enable a smooth workflow and less material wear.

Through an innovative solution, Linde Hydraulics implements the float function in the excavator with only a small additional piston in the valve. Compared to conventional solutions, the implementation is thus more space-saving and can also be used at lower speeds.

Rod-to-head regeneration is used for cylinder functions with high flow and high actuator speed at a simultaneous low pressure level, for example in the excavator’s stick.

In an excavator, when the operator uses the joystick for fast and light movements, the full pump flow would be needed in conventional systems. This is exactly the effect that rod-to-head regeneration avoids and it eliminates the need for high pump flow.

Section view of the valve when the excavator bucket is being used for clearing.
Section view of the valve when the excavator bucket is being used for clearing.

The pump only needs to provide the differential flow between the rod and the head. Any additional pump flow above this amount now has a positive effect on the speed of movement of the cylinder. In this way, much more dynamic movements are possible with less pumping in the system. As soon as the load on the cylinder increases, the rod-to-head regeneration is automatically switched off.

Symmetrical valves with return bypass are used when functions are operated for long periods and require high flow rates — for example, travel drives in mobile excavators. A large part of the volume flow here is directed through the return tank bypass, which is controlled by a simple pin, via the reloading valves into the tank — and without significant flow losses. This allows noticeable fuel savings compared to conventional valves.

In addition, with this function, the make-up valves can draw additional required volume flow from the tank during downhill travel, thus avoiding cavitation.

Anti drift is used in lifting functions when a specific position must be secured and guaranteed to be held for a longer period – for example, in the crane operation of an excavator. The anti drift function uses an additional valve to prevent the leakage that occurs in conventional control valves. This valve is located between the control piston and the actuator and provides a seal depending on the actuation of the section.

Boom or lift-regeneration is used for lifting functions, such as the boom of the excavator. In this function, the weight force is used during lowering and the oil flow from the return of the lifting cylinder is partially diverted to the opposite side. In this way, the flow required here is already provided largely without pumping. In addition, the tendency towards cavitatation is eliminated. The flow saved in this process is thus directly available for other functions.

“The extent to which a hydraulic valve as a core component of the excavator determines not only function and performance, but also the fuel consumption of the overall vehicle, was demonstrated by us at an initial pilot customer. Consumption savings of up to 10% were seen in the field test,” said Dr. Matthias Schreiber, CEO of Linde Hydraulics.

The third generation of valve technology is a suitable complement to the existing second generation (three sections) due to the compact five sections monoblock and is also perfectly matched to the wheeled excavator.

The control valve is available in two nominal sizes: nominal size 18 with a max. flow rate of 250 lpm and size 22, which allows a max. flow rate of 350 lpm.

In the monoblock, Linde Synchron Control (LSC) is used as standard (post-compensated), while a choice can be made between pre- and post-compensated for the option sections. Both hydraulic and electro-hydraulic controls are possible.

The valve block is already in use at a pilot customer in a wheeled excavator and can also be used for material handlers.

Linde Hydraulics
linde-hydraulics.com

 


Filed Under: Mobile Hydraulic Tips, Valves & Manifolds
Tagged With: lindehydraulics
 

About The Author

Mary Gannon

Mary Gannon is editor of Fluid Power World. She has been a technical writer and editor for more than 13 years, having covered fluid power, motion control and interconnect technologies.

Current Digital Issue

  Easier access to more of our content Every other month, readers of Fluid Power World have access to our beautiful print and digital editions, where we share a selection of the best fundamentals content, technology news, case studies, and technical articles that cover the gamut of hydraulics and pneumatics system design. But we only…

Subscribe!

Fluid Power World is written by engineers for engineers engaged in designing machines and or equipment in Off-Highway, Oil & Gas, Mining, Packaging, Industrial Applications, Agriculture, Construction, Forestry, Medical and Material Handling. Fluid Power World covers pneumatics, mobile hydraulics and industrial hydraulics.

Fluid Power Design Guides

fluid
“fpw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Fluid Power Professionals.

RSS Featured White Papers

  • Moving fluid power forward
  • High-force linear motion: How to convert from hydraulic cylinders to electric actuators and why.
  • A technical comparison: Performance of pneumatic cylinders and electric rod actuators
Fluid Power World
  • Hose Assembly Tips
  • Mobile Hydraulic Tips
  • Pneumatic Tips
  • Sealing & Contamination Control Tips
  • About us
  • Contact Us

Copyright © 2024 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Fluid Power World

  • Home
  • Technologies
    • Hydraulics
      • Cylinders & Actuators
      • Filtration/Contamination Control
      • Fittings, Couplings & Adapters
      • Fluids
      • Fluid Conditioning
      • Hose & Tubing
      • Pumps & Motors
      • Related Technologies
      • Sealing
      • Sensors & Gauges
      • Valves & Manifolds
    • Pneumatics
      • Air Preparation & Regulation
      • Compressed Air Technologies
      • Cylinders & Actuators
      • End Effectors & Grippers
      • Fittings, Couplings & Adapters
      • Hose & Tubing
      • Sensors
      • Vacuum
      • Valves & Manifolds
  • Engineering Basics
  • Trending
  • Resources
    • Digital Issues
    • Pneumatics Tech Toolbox
    • Podcasts
    • Subscribe to Fluid Power World Print Magazine
    • Videos
    • Webinars / Digital Events
    • White Papers
  • Women in Engineering
    • Women in Fluid Power
    • Women in Engineering
  • Design Guide Library
  • Classrooms
    • Pneumatics Classroom
  • SUBSCRIBE