Fluid Power World

  • Home
  • Technologies
    • Hydraulics
      • Cylinders & Actuators
      • Filtration/Contamination Control
      • Fittings, Couplings & Adapters
      • Fluids
      • Fluid Conditioning
      • Hose & Tubing
      • Pumps & Motors
      • Related Technologies
      • Sealing
      • Sensors & Gauges
      • Valves & Manifolds
    • Pneumatics
      • Air Preparation & Regulation
      • Compressed Air Technologies
      • Cylinders & Actuators
      • End Effectors & Grippers
      • Fittings, Couplings & Adapters
      • Hose & Tubing
      • Sensors
      • Vacuum
      • Valves & Manifolds
  • Engineering Basics
  • Trending
  • Resources
    • Digital Issues
    • Pneumatics Tech Toolbox
    • Podcasts
    • Subscribe to Fluid Power World Print Magazine
    • Videos
    • Webinars / Digital Events
    • White Papers
  • Women in Engineering
    • Women in Fluid Power
    • Women in Engineering
  • Design Guide Library
  • Classrooms
    • Pneumatics Classroom
  • SUBSCRIBE

Why should you consider operating temperature when selecting hydraulic fluid?

By Mary Gannon | February 27, 2017

Share

Hydraulic-fluidsHydraulic fluid selection criteria include the expected range of operating temperatures, available means of temperature control and fluid physical properties at expected temperature levels. Where ambient and structural temperatures are above hydraulic fluid flash and/or fire points in a compartment, the potential fire hazard must be considered.

Fluid stability is affected by thermal stress, which can result in changes in viscosity and formation of volatile components, insoluble materials and corrosive deposits. Hydraulic system efficiencies are reduced by high fluid viscosity at lower temperatures, which results in inlet problems with pumps, sluggish response of critical actuators, power loss in transmission and weight penalties due to line size. At high temperatures, low fluid viscosity can cause internal leakage and slippage in pumps, actuators and valves.

Compressibility of a fluid increases with pressure and temperature and results in loss of volume output of pumps. In control systems, compression of fluid provides a mass-spring condition that limits system response. For analytical purposes, the assumption of uniform temperature throughout a hydraulic circuit usually is quite accurate. When a pressure drop occurs without external work resulting, i.e. losses through orifices and tubing, the hydraulic fluid temperature rises by 7° F per 1,000 psi drop for each circuit. However, this rise normally is dissipated as the fluid passes through the system.

Low power level systems (low pressure of 1,000 psi or less and low flow (of 5 gpm or less) generally do not require any special cooling equipment. Large high power level systems operating in relatively warm ambient temperature regions may require heat exchangers in order to maintain fluid temperatures below upper limits of 135° C. For hydraulic systems working under operating temperature range –40 to 100° C with a maximum temperature range –54 to 135° C, mineral based hydraulic fluids are preferable. For higher operating temperature applications, fire resistant synthetic hydraulic fluids are more suitable. However, these fluids become highly viscous below –20° C.

Contributed by Harshavardhan Joshi, Aircraft Hydraulic Systems Engineer, CSIR – National Aerospace Laboratories, India

The post Why should you consider operating temperature when selecting hydraulic fluid? appeared first on Sealing & Contamination Control Tips.


Filed Under: Filtration/Contamination Control, Sealing & Contamination Control Tips

 

About The Author

Mary Gannon

Mary Gannon is editor of Fluid Power World. She has been a technical writer and editor for more than 13 years, having covered fluid power, motion control and interconnect technologies.

Current Digital Issue

  Easier access to more of our content Every other month, readers of Fluid Power World have access to our beautiful print and digital editions, where we share a selection of the best fundamentals content, technology news, case studies, and technical articles that cover the gamut of hydraulics and pneumatics system design. But we only…

Subscribe!

Fluid Power World is written by engineers for engineers engaged in designing machines and or equipment in Off-Highway, Oil & Gas, Mining, Packaging, Industrial Applications, Agriculture, Construction, Forestry, Medical and Material Handling. Fluid Power World covers pneumatics, mobile hydraulics and industrial hydraulics.

Fluid Power Design Guides

fluid
“fpw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Fluid Power Professionals.

RSS Featured White Papers

  • Moving fluid power forward
  • High-force linear motion: How to convert from hydraulic cylinders to electric actuators and why.
  • A technical comparison: Performance of pneumatic cylinders and electric rod actuators
Fluid Power World
  • Hose Assembly Tips
  • Mobile Hydraulic Tips
  • Pneumatic Tips
  • Sealing & Contamination Control Tips
  • About us
  • Contact Us

Copyright © 2024 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Fluid Power World

  • Home
  • Technologies
    • Hydraulics
      • Cylinders & Actuators
      • Filtration/Contamination Control
      • Fittings, Couplings & Adapters
      • Fluids
      • Fluid Conditioning
      • Hose & Tubing
      • Pumps & Motors
      • Related Technologies
      • Sealing
      • Sensors & Gauges
      • Valves & Manifolds
    • Pneumatics
      • Air Preparation & Regulation
      • Compressed Air Technologies
      • Cylinders & Actuators
      • End Effectors & Grippers
      • Fittings, Couplings & Adapters
      • Hose & Tubing
      • Sensors
      • Vacuum
      • Valves & Manifolds
  • Engineering Basics
  • Trending
  • Resources
    • Digital Issues
    • Pneumatics Tech Toolbox
    • Podcasts
    • Subscribe to Fluid Power World Print Magazine
    • Videos
    • Webinars / Digital Events
    • White Papers
  • Women in Engineering
    • Women in Fluid Power
    • Women in Engineering
  • Design Guide Library
  • Classrooms
    • Pneumatics Classroom
  • SUBSCRIBE