Fluid Power World

  • Home
  • Technologies
    • Hydraulics
      • Cylinders & Actuators
      • Filtration/Contamination Control
      • Fittings, Couplings & Adapters
      • Fluids
      • Fluid Conditioning
      • Hose & Tubing
      • Pumps & Motors
      • Related Technologies
      • Sealing
      • Sensors & Gauges
      • Valves & Manifolds
    • Pneumatics
      • Air Preparation & Regulation
      • Compressed Air Technologies
      • Cylinders & Actuators
      • End Effectors & Grippers
      • Fittings, Couplings & Adapters
      • Hose & Tubing
      • Sensors
      • Vacuum
      • Valves & Manifolds
  • Engineering Basics
  • Trending
  • Resources
    • Digital Issues
    • Pneumatics Tech Toolbox
    • Podcasts
    • Subscribe to Fluid Power World Print Magazine
    • Videos
    • Webinars / Digital Events
    • White Papers
  • Women in Engineering
    • Women in Fluid Power
    • Women in Engineering
  • Design Guide Library
  • Classrooms
    • Pneumatics Classroom
  • SUBSCRIBE

Hydraulic cylinders at IFPE 2017

By Mary Gannon | January 11, 2017

Share

Every three years, manufacturers of fluid power components and systems exhibit at The IFPE show in Las Vegas. This year’s event, from March 7-11, will offer users of these technologies an opportunity learn about the latest in hydraulic cylinders. Here you can learn how they are constructed and used on mobile machinery. Below, you will find a listing of IFPE 2017 exhibitors who will be displaying their hydraulic cylinder technologies.

hydraulic-cylindersMobile machinery is rife with hydraulic cylinders, particularly for use on buckets, shovels, booms and other tools and attachments on machines like backhoes, excavators, telehandlers, cranes, balers, skid steer loaders, dump trucks and more. These machines and attachments use hydraulic cylinders to push, pull, lift and lower loads that other might otherwise be impossible to move with lesser force technologies.

Cylinders are responsible for converting hydraulic power into linear motion to do work or move a load by applying pressure to the cylinder’s piston. These somewhat simple devices usually feature a basic construction, including the aforementioned piston inside a cylindrical or rectangular tube or body, end caps and housings, as well as necessary bolts, nuts, plugs, bearings, rod seals and wipers, and more.

The two most common designs used on mobile equipment are welded-tube and tie-rod cylinders. Welded cylinders are constructed of a heavy-duty tube that is closed off with a welded-on cap. Mounting anchors, including trunnion, side lug and side tapped, clevis, bolt, and flange types, are usually attached to the welded cap. A threaded gland on the rod end allows these cylinder types to be easily repaired. The simpler, but less durable tie-rod cylinder is designed with bolts and tie rods that hold two castings on each end of the barrel together. Also easy-repairable, this cylinder design is common on agriculture equipment and is often used on NFPA or ISO cylinders.

To determine a cylinder’s mechanical force, one must know the diameter of the piston and use it the following formula to give you the linear force of a cylinder. First, convert the piston diameter into area by using using πr^2 then multiply area by your chosen pressure unit.

Pressure x Area = Force

Differential cylinders are the most common hydraulic cylinder design. Because they feature a piston rod in just one end, the force created when retracting is not equal to that created when extending. In retraction, a differential cylinder has less area for pressure to work upon because of the space taken up by the rod. Consequently, a differential cylinder will retract with more velocity than it extends, given equal flow at either service port. Once again, this effect is a result of the space taken up by the rod—in this case, filling up the reduced volume more quickly. The force reduction resulting from the rod location is inversely proportional to the flow increase from the same cause. For example, if the area of the cap side of the piston is twice that of the area from the rod side of the piston, it is referred to as a “two-to-one” cylinder. This cylinder will extend with twice the force than in retraction, and retract in half the time as extension.

Differential cylinders are normally double-acting, i.e., they are powered in retraction as well as extension. A differential cylinder can be powered in just one direction, if required, which is called single-acting. A single-acting cylinder is manufactured in various forms, and normally when a differential cylinder is used as single acting, it will have a breather at the non-powered port to avoid trapped air. Single-acting cylinders are sometimes spring loaded, and are important if the mass of the load isn’t enough to push the fluid back through valves alone. Springs can be added to either the cap or rod end of a cylinder, enabling spring-extend or spring-retract functions respectively.

Single-acting cylinders can also be rams, which are cylinders consisting of just a rod in a tube. Pressure pushes the ram up or out, but often requires energy to retract. This energy can come from the mass of the load, but sometimes is generated from springs or other devices that are part of the machine itself, rather than inside the cylinder. Another common cylinder species is the telescopic variety. These cylinders use multiple-sections that are both bodies and rods, and can extend far longer than their retracted length would suggest. They are relatively compact and can usually extend twice their retracted length.

Cylinder manufacturers and suppliers at IFPE
(Please note, list may not be complete as changes are made regularly to the IFPE suppliers’ categories pages.)

Exhibitor Booth Number
Aber SL80027
ALA Industries Limited – Yuken Hydraulics S82856
Ashun Fluid Power Co., Ltd S82206
Bosch Rexroth Corp S80214
Burnside America Inc. S82906
BVA Hydraulics S83710
Component Sourcing Intl LLC S83252
Cross Manufacturing Co. S81322
Dantal Hydraulics Pvt. Ltd. S81852
DLH Fluid Power Inc. S83634
Eaton Hydraulics Business S80230
Galland Henning Nopak, Inc. S80630
Hercules Sealing Products S80356
Hydraulex Global S82652
IC-Fluid Power, Inc. S80406
Intradin (Shanghai) Machinery Co. Ltd S82807
Iowa Fluid Power (IFP/EHA) S83505
International FPA S83630
JARP Industries S83556
Liftwell Hydraulics Pvt. Ltd. S83644
Ligon Hydraulic Cylinder Group S82916
Monarch Industries S82546
Montanhydraulik GmbH G73427
Muncie Power Products S82240
Nason S80714
Oilgear S80514
Parker Hannifin S80242
Polygon Co. B91825
Prince Manufacturing Corp. S82920
Ram Industries Inc S81815
Rota Engineering Ltd S84130
SMC Corporation of America S83251
Star Hydraulics, LLC S83006
Texas Hydraulics Inc S81819
Veljan Hydrair Limited S82618
West Craft Manufacturing B93520
Wetherell Manufacturing S81755
Wipro Enterprises Inc. S83506
Yates Cylinders S82429
Yerik International G72100

Mobile Hydraulic Tips


Filed Under: Cylinders & Actuators, Mobile Hydraulic Tips

 

About The Author

Mary Gannon

Mary Gannon is editor of Fluid Power World. She has been a technical writer and editor for more than 13 years, having covered fluid power, motion control and interconnect technologies.

Current Digital Issue

  Easier access to more of our content Every other month, readers of Fluid Power World have access to our beautiful print and digital editions, where we share a selection of the best fundamentals content, technology news, case studies, and technical articles that cover the gamut of hydraulics and pneumatics system design. But we only…

Subscribe!

Fluid Power World is written by engineers for engineers engaged in designing machines and or equipment in Off-Highway, Oil & Gas, Mining, Packaging, Industrial Applications, Agriculture, Construction, Forestry, Medical and Material Handling. Fluid Power World covers pneumatics, mobile hydraulics and industrial hydraulics.

Fluid Power Design Guides

fluid
“fpw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Fluid Power Professionals.

RSS Featured White Papers

  • Moving fluid power forward
  • High-force linear motion: How to convert from hydraulic cylinders to electric actuators and why.
  • A technical comparison: Performance of pneumatic cylinders and electric rod actuators
Fluid Power World
  • Hose Assembly Tips
  • Mobile Hydraulic Tips
  • Pneumatic Tips
  • Sealing & Contamination Control Tips
  • About us
  • Contact Us

Copyright © 2024 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Fluid Power World

  • Home
  • Technologies
    • Hydraulics
      • Cylinders & Actuators
      • Filtration/Contamination Control
      • Fittings, Couplings & Adapters
      • Fluids
      • Fluid Conditioning
      • Hose & Tubing
      • Pumps & Motors
      • Related Technologies
      • Sealing
      • Sensors & Gauges
      • Valves & Manifolds
    • Pneumatics
      • Air Preparation & Regulation
      • Compressed Air Technologies
      • Cylinders & Actuators
      • End Effectors & Grippers
      • Fittings, Couplings & Adapters
      • Hose & Tubing
      • Sensors
      • Vacuum
      • Valves & Manifolds
  • Engineering Basics
  • Trending
  • Resources
    • Digital Issues
    • Pneumatics Tech Toolbox
    • Podcasts
    • Subscribe to Fluid Power World Print Magazine
    • Videos
    • Webinars / Digital Events
    • White Papers
  • Women in Engineering
    • Women in Fluid Power
    • Women in Engineering
  • Design Guide Library
  • Classrooms
    • Pneumatics Classroom
  • SUBSCRIBE